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Abstract
Motivation: Spatial proteomics data have been used to map cell states and improve our understanding of tissue organization. More recently,
these methods have been extended to study the impact of such organization on disease progression and patient survival. However, to date, the
majority of supervised learning methods utilizing these data types did not take full advantage of the spatial information, impacting their perfor-
mance and utilization.

Results: Taking inspiration from ecology and epidemiology, we developed novel spatial feature extraction methods for use with spatial proteo-
mics data. We used these features to learn prediction models for cancer patient survival. As we show, using the spatial features led to consistent
improvement over prior methods that used the spatial proteomics data for the same task. In addition, feature importance analysis revealed new
insights about the cell interactions that contribute to patient survival.

Availability and implementation: The code for this work can be found at gitlab.com/enable-medicine-public/spatsurv.

1 Introduction

Recent technological advances have made it possible to study
the expression patterns of many proteins simultaneously in a
single in situ sample (Goltsev et al. 2018; Merritt et al. 2019;
Hickey et al. 2022). These modalities, often termed “spatial
proteomics” methods, have been used to map cell states to
subcellular protein organization (Gut et al. 2018), build com-
prehensive single-cell maps of tissues (HuBMAP Consortium
2019), and further understand the tumor microenvironment
(TME) in several cancers (Lewis et al. 2021), among several
other applications (HuBMAP Consortium 2019; Hickey et al.
2022). Spatial proteomics imaging modalities (Goltsev et al.
2018; Merritt et al. 2019; Hickey et al. 2022) open the door
to a more detailed characterization of spatial patterns of cells
in tissue samples and their impact on patient outcomes.
Another potential use of spatial proteomics is in clinical deci-
sion making. Recent advances in the analysis of cancer sam-
ples indicates that prognosis is linked to spatial pattern of
immune and cancer cells and their interactions (Lewis et al.
2021). While such information can be obtained from spatial
proteomics profiling, to date little work has focused on using
such data for prediction and classification. A major challenge
is to define the relevant spatial features that can be used as in-
put to a prediction method.

The use of spatial data in prediction and forecasting tasks is
well established in the fields of ecology and geology (Perry et al.
2006; Dowd et al. 2007; Velázquez et al. 2016). Spatial point
processes (Baddeley et al. 2015) are often used in such fields to
describe the spatial correlation between points, e.g. to describe

the level to which points show aggregation/clustering or repul-
sion/inhibition. Such information is useful for tasks including
testing for historical changes in spatial patterns of tree species
(Sterner et al. 1986), estimating tree characteristics based on spa-
tial patterns (Stoyan and Penttinen 2000), and predicting the oc-
currence of ore deposits for mining (Foxall and Baddeley 2002).
In epidemiology, spatial information is often used for the predic-
tion of patient outcomes and disease phenotypes (Pfeiffer et al.
2008); however, in such cases, the focus is on individuals and
not interactions at the cellular level. While there have been some
recent methods that take advantage of spatial proteomics data
to improve the prediction of patient outcomes (Uttam et al.
2020; Wu et al. 2022b), to the best of our knowledge, a compre-
hensive analysis of spatial feature usage is still lacking for spatial
proteomics data.

Here, we develop and use spatial features for supervised
learning from spatial proteomics data. Specifically, we adapt
spatial point process theory (Baddeley et al. 2015) for use in
such data and use it to extract information on the spatial dis-
tribution of protein markers. We also define and use cell-
based spatial features. These features are then used as input
for survival prediction models for cancer prognosis analysis.

We applied our framework to analyze profiled head and neck
squamous cell carcinoma (HNSCC) tumor samples from 81
patients. Roughly 600 000 individuals are diagnosed with
HNSCC on an annual basis worldwide, with a 40%–50% mor-
tality rate (Leemans et al. 2018). While in recent years there
have been significant process in our understanding of the disease
(Leemans et al. 2018; Cillo et al. 2020), there is still little
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understanding of the spatially relevant factors in the TME that
contribute to the progression of the disease (Kulasinghe et al.
2021). As we show, by elucidating the spatial factors that affect
clinical outcomes, our method can both improve diagnosis and
treatment decisions and lead to better understanding of the mo-
lecular mechanisms impacting disease progression.

2 Methods

We introduce a framework to extract spatially relevant fea-
tures from spatial proteomics imaging data for use in predic-
tion of patient survival (Fig. 1). We then train a random
survival forest (RSF) model (Ishwaran et al. 2008) using these
features to predict low- and high-risk individuals (Fig. 4a) and
compare the results to methods that use traditional, non-
spatial, features.

2.1 Dataset description and pre-processing

The dataset used in this work is a 39-plex spatial proteo-
mics CODEX dataset from 81 HNSCC patients. Details of

the dataset collection can be found in Wu et al. (2022b)
(Dataset UPMC-HNC). After performing quality control,
which included removing samples with poor quality (few
cells present, out of focus, etc.) or with poor biomarker
staining performance (low signal-to-noise ratio, poor sub-
cellular specificity, etc.), our dataset included 307 imaged
samples collected from 7 batches/coverslips, with between
1 and 8 samples belonging to each patient. In this work, we
excluded samples from “normal mucosa” tissue as we were
only interested in using samples from cancerous tissue,
resulting in a total of 281 samples and 1 973 232 cells, with
an average of 7022 cells per sample. Samples were anno-
tated with clinical data, including patient status, patient
survival length, and Human papillomavirus (HPV) status
(Supplementary Table S1 and Supplementary Fig. S1).

2.1.1 Data split and evaluation

For performance evaluation, cross-validation sets were pre-
pared in two ways:

(a)

(b)

(c)

(d) (e)

Figure 1. (a) Processing of data and creation of the neighborhood matrix. We first perform segmentation on the images and assign cell types based on

biomarker expression. The neighborhood matrix is created by considering k¼ 10 nearest neighbors of each cell (Section 2). (b) The transformed version of

Ripley’s K-function (Section 2) is used to extract biomarker-based spatial features from the image samples, with function values at r¼ 12, 30 lm
corresponding to 1 and 2–3 cell distances. (c) The extracted spatial features are evaluated with a survival prediction model. Analysis of the predicted risk

scores and the top features used by the model reveal spatial features relevant to HNSCC. (d) Kaplan–Meier plot showing survival probability of patients,

separated by HPV status. Log-rank P-value (p ¼ 5:849e � 3) indicates the difference between HPV� and HPVþ survival curves is statistically significant.

(e) Cell type composition within the UPMC dataset. The colors match the colors in the second image of (a).
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1) N-fold cross validation, grouped by patients. N¼10 for
the survival prediction task.

2) Leave-one-coverslip-out. For each fold, all the samples
from a single coverslip are held out as the validation set,
resulting in seven total folds.

Training and evaluation were run independently for each of
the folds, and prediction performances were averaged over all
folds.

2.2 Cell segmentation and classification

After image preprocessing, we applied a neural network-
based cell segmentation tool, DeepCell (Greenwald et al.
2022), on the 40,6-diamidino-2-phenylindole (DAPI) image
channels to identify nuclei, and these nuclear masks were di-
lated to obtain whole-cell segmented cells. Nuclear segmenta-
tion masks were stochastically dilated by flipping pixels with
a probability equal to the fraction of positive neighboring pix-
els. This dilation was repeated for nine cycles for all CODEX
data (Wu et al. 2022a, 2022b). On each CODEX sample,
given the segmentation of individual cells, single cell expres-
sion was computed for each biomarker j (Supplementary
Methods) (Hickey et al. 2021; Wu et al. 2022a).

To assign cell types, we obtained an cell-by-marker expres-
sion matrix with normalized expression values zðxðjÞi Þ. Then
we performed principal component (PC) analysis to extract
the top 20 PCs. We constructed a k-nearest neighbor graph
(k¼ 30) on top of the 20 PCs of the expression matrix and
performed graph clustering (Traag et al. 2019) on the result.
Clusters were manually annotated according to their cell bio-
marker expression patterns (Supplementary Fig. S2). This
procedure was performed on a subset of 10 000 cells and sub-
sequently used to train a k-nearest neighbor algorithm to pre-
dict cell types from the normalized expression vector. This
algorithm was used to transfer labels to the entire dataset.

2.3 Non-spatially dependent features

We extracted several non-spatial features from the data.
Average biomarker across image: For each sample, a 39-

length vector is computed with the average biomarker pixel
intensity across the sample image for each biomarker.

Average biomarker in cells: For each sample, a 39-length
vector is computed with the average biomarker pixel intensity
within the cell segmentation masks for each biomarker.

Cell type proportions: For each sample, a 16-length vector
is computed with the fraction of each cell type present in the
sample. This vector sums to 1.

2.4 Spatially dependent features

To take advantage of the spatial information present in the
data, we developed several spatial-based features as follows:

2.4.1 Neighborhood matrix

For each sample, we compute a “neighborhood matrix,” M,
which is a matrix with shape (number of cell types) � (num-
ber of cell types), and each row sums to 1. Here, M is a 16 �
16 matrix. Element mij is the fraction of cell type j within the
k-nearest neighbors of cell type i, averaged across all cells of
type i in the sample. In this work, we use k¼ 10, and nearest
neighbors are computed using the centroid coordinates of
each cell. We observe similar results for other values of k.

2.4.2 Spatial statistics

We leveraged techniques based on spatial point process the-
ory, which is widely used in the fields of ecology and geology
(Perry et al. 2006; Dowd et al. 2007; Baddeley et al. 2015;
Velázquez et al. 2016). A spatial point pattern is a dataset
that gives the spatial locations of things or events. A point
process is a spatial probability distribution whose outcome is
a spatial point pattern. A common null model for a point pro-
cess is the “homogeneous” “Poisson point process,” which
exhibits “complete spatial randomness” (CSR). This process
is characterized by two key properties: (i) homogeneity: the
points have no preference for any spatial location and (ii) in-
dependence: information about the outcome in one region of
space has no influence on the outcome in other regions. A spa-
tial point pattern diverging from this null model indicates spa-
tial clustering or dispersion. This information is used as a
feature in our analysis for spatial point patterns of specific
biomarkers.

2.4.3 A transformation of Ripley’s K-function

A popular technique for analyzing spatial correlation and
measuring deviation from CSR in point patterns is Ripley’s K-
function (Baddeley et al. 2015). Informally, this function is a
measure of the pairwise distance distribution of points in the
pattern and can indicate whether points are clustered, dis-
persed, or distributed randomly. The K-function of a station-
ary point process X is defined such that kKðrÞ is equal to the
expected number of additional random points within a dis-
tance r of a typical random point of X. Here, k is the intensity
of the process, i.e. the expected number of points of X per
unit area. The K-function can be estimated using

K̂ðrÞ ¼ A

nðn� 1Þ
Xn

i¼1

Xn

i¼1;j 6¼i

1ðdij � rÞeij; (1)

where A is the area of the window, n is the number of data
points, dij is the distance between points i and j in X, and
1ðdij � rÞ is an indicator that equals 1 if the distance is less
than or equal to r. eijðrÞ is an edge correction weight.
Specifically, we use Ripley’s isotropic correction estimator
(Supplementary Methods).

The K-function for a homogeneous Poisson point process is
Kpois ¼ pr2 (Baddeley et al. 2015). One commonly used trans-
form of the K-function is Besag’s L-function (Baddeley et al.

2015), which can be estimated with L̂ðrÞ ¼
ffiffiffiffiffiffiffi
K̂ðrÞ

p

q
. This trans-

forms the theoretical Poisson K-function to the straight line
LpoisðrÞ ¼ r, which makes visual assessment of the graph eas-

ier during exploratory analysis.
Spatial point processes and patterns can be “marked,”

which means that each point is associated with a discrete or
continuous value. For example, if a cell is represented as a
point, its mark can be the vector of biomarker expression val-
ues for that cell. The mark-weighted K-function for marked
point processes is a generalization of Ripley’s K-function, in
which the contribution from each pair of points is weighted
by a function of their marks. This function allows us to mea-
sure the spatial correlation of mark values in addition to the
spatial correlation of the points themselves. We estimate the
mark-weighted K-function for each cell (Supplementary
Methods), denoted as L̂w;mðrÞ for feature m.
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2.4.4 Using spatial statistics to derive spatial features

We use the above spatial statistics techniques to featurize our
data as follows:

1) We assume that each cell centroid represents a point in a
spatial point process and that the normalized biomarker
expression values for that cell are the “marks” or
weights for that point.

2) Compute L̂ðrÞ using cell centroid coordinates.
3) For each biomarker m, compute L̂w;mðrÞ, the L-transfor-

mation of the mark-weighted K-function.
4) Compute L̂

norm

w;m ðrÞ ¼ L̂w;mðrÞ � L̂ðrÞ for each biomarker
in the sample. By subtracting the unweighted L from the
weighted version, we can inspect whether individual bio-
marker expressions are clustered or dispersed with re-
spect to the cell locations.

L̂ðrÞ and L̂w;mðrÞ were computed using the Lest and
Kmark functions from the R spatstat package (Baddeley
and Turner 2005), respectively. For each sample, we com-
puted L̂

norm

w;m ðrÞ for r 2 f0;1; . . . ; 400g pixels for each bio-
marker m. We treated r as a hyperparameter, which
determined which values of L̂

norm

w;m ðrÞ to use as input, and eval-
uated the performance of our prediction models using differ-
ent values of r (Supplementary Figs S3 and S4). From these
experiments, we chose the values r 2 f80;212g, which corre-
spond to around 30 and 80 lm, the approximate diameter of
2–3 and 6–8 cells, respectively. This resulted in a ð39 � 2Þ-
length vector for each sample as input to our models.

2.5 Comparison methods

We compared the use of our spatial features with several prior
methods (Patwa et al. 2021; Seal et al. 2022). While these
were applied to spatial data for clinical outcome prediction,
unlike our approach, they do not fully utilize spatial features.

2.5.1 Biomarker positivity and interactions based on
thresholds

A commonly used method for characterizing cells from fluo-
rescence imaging data is to convert biomarker expression in
each cell to a binary indicator using a threshold (Patwa et al.
2021). Following the methods of Patwa et al. (2021), we cal-
culated the biomarker positivity thresholds from expression
levels of the image background. The image background is all
pixels in the sample that are not assigned to cells after cell seg-
mentation. We would expect that the pixel intensities outside
of cells are close to zero, and so an intuitive way to choose a
threshold is to take the average pixel values in the image
background. For each biomarker, we summed the intensity
values in the image background across all samples and di-
vided this value by the total number of background pixels to
get the average background intensity. This value was used as
the threshold to determine whether a cell was positive for that
biomarker. For each sample, we then computed the fraction
of cells positive for each biomarker using the thresholds,
resulting in a 39-length vector for each sample as input to our
models.

We also computed biomarker interactions between neigh-
boring cells, again following the methods from Patwa et al.
(2021). See Supplementary Methods for details.

2.5.2 DenVar

DenVar (Seal et al. 2022) is an approach to cluster spatial
proteomic imaging samples/subjects into meaningful groups
based on the probability densities of biomarker expression.
For each sample, the probability density of each biomarker is
estimated using kernel density estimation. Next, the Jenson–
Shannon distance (Endres and Schindelin 2003) is used to
quantify the difference between densities of the same bio-
marker in pairs of samples. To classify samples using this ap-
proach, we used the matrix of distances between samples to
separate the samples into two clusters using hierarchical clus-
tering. These cluster assignments were computed for each bio-
marker, resulting in a 39-length binary vector for each sample
indicating the cluster assignment for each biomarker.

2.6 Survival analysis
2.6.1 Right-censored survival data

In right-censored survival data, the observed data for each
sample is ðT; dÞ, where T is the observed time and d 2 f0;1g
is an event/censorship indicator, where 0 means the observa-
tion is censored (patient is alive) and 1 means an event has oc-
curred (patient has died). When d¼1, we know that T is the
true survival time, but when d¼0, we only know the patient
has survived to time T, but not when they actually die.

2.6.2 RSF

RSFs (Ishwaran et al. 2008) are an extension of random forests
to the setting of right-censored survival data. We refer to the in-
dividual trees within an RSF as survival trees. Here we per-
formed RSF analysis for the cancer data. See Supplementary
Methods for details on the RSF implementation.

For the evaluation of the RSF models, we use Harrell’s C
index, or concordance index, for right-censored data. See
Supplementary Methods for details.

2.7 Stratifying patients into “low”- and “high”-risk

cohorts

To stratify patients into “low-risk” and “high-risk” cohorts,
we used the predicted risk values from the RSF model trained
on the neighborhood matrix. The model output a risk score
for each sample, and we averaged these scores across samples
for each patient to obtain a patient-level risk score. Next, we
chose a threshold that maximized the difference between the
Kaplan–Meier curves for the resulting cohorts based on the
log-rank test (Peto and Peto 1972). We used the Mann–
Whitney U-test with a Bonferroni multiple hypothesis test cor-
rection to determine statistically significant differences in
neighbor fraction values between the two cohorts.

3 Results

We developed spatial-based feature extraction methods for
spatial proteomics data. These include a matrix encoding
neighborhood relationships between pairs of cell types and a
spatial point process method that measures spatial correla-
tion, a transformed version of Ripley’s K-function (Fig. 1).
We used these spatial features to predict survival times of
HNSCC patients and assign “low”- and “high”-risk patient
cohorts based on the spatial and protein marker data. To
evaluate our features, we used a 39-plex spatial proteomics
CODEX dataset from 81 HNSCC patients (Section 2).
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3.1 Data featurization

Table 1 shows different properties of each of the extracted
features from the data. Note that these features can be largely
divided based on their use (or lack thereof) of spatial informa-
tion. For example, “average biomarker across image” and
“average biomarker in cells” do not utilize specific location
and can be computed by non-spatial methods. In contrast, the
“neighborhood matrix” can only be computed if spatial data
are available. We denote each feature type as spatially or non-
spatially dependent in Table 1.

3.2 Ripley’s K-function features describe clustering

and dispersion patterns in spatial proteomics data

Ripley’s K-function (Baddeley et al. 2015) is a measure of spatial
correlation between points in a point pattern and can indicate
whether points are clustered or dispersed. We computed a novel
transformed version of the K-function to inspect clustering and
dispersion behavior of biomarker expression with respect to cell
locations (Section 2). Figure 2a–d shows some examples of this
function applied to the data. In general, lower function values
correspond to more dispersed biomarker expression (CD68 in
both examples), and higher function values correspond to clus-
tered expression at that value of r (CD45 in both examples).

In HNSCC, HPV status is a key prognostic factor; patients
that test positive for HPV usually have a better survival rate
than patients without HPV (Leemans et al. 2018), which is
reflected in this dataset (Fig. 1e). In order to reveal spatial pat-
terns that differ between HPV� and HPVþ patients, we used
the transformed K-function values at r¼ 30, 80 lm, which ap-
proximate the diameter of 2–3 and 6–8 cells, respectively, to in-
spect the difference in function values between these cohorts.
We found several biomarkers that exhibited significantly differ-
ent values between these cohorts (Supplementary Table S2).
For example, at r¼ 30 lm (small cell clusters), CD68 and
Vimentin function values in the HPV� cohort are significantly
greater than those in the HPVþ cohort (Fig. 2e, P< .05), indi-
cating increased clustering behavior of these biomarker expres-
sions in the HPV� samples. It has been shown that increased
density of CD68þ tumor-associated macrophages (TAMs) is
associated with increased vascular and lymphatic invasion in
HNSCC (Pollard 2004; Kuang et al. 2007), and Vimentin is
known to be associated with tumor growth and metastasis in
cancer (Satelli and Li 2011). These differences in the trans-
formed K-function values suggest that increased spatial cluster-
ing of these biomarkers may be correlated with the worse
prognosis often found in HPV� patients of HNSCC.

3.3 Spatially dependent feature sets improve

predictive performance

To highlight the usefulness of spatial information for prediction,
we compared spatially dependent and non-spatially dependent

features by training a RSF model to predict survival lengths in
HNSCC patients. For this analysis, we used two cross-validation
schemes: (i) 10-fold cross-validation where folds were grouped
by patients and (ii) 7-fold cross-validation where each fold is a
different coverslip/batch (Section 2). We computed the average
concordance index on the held-out test set for each fold, and re-
peated each experiment 100 times with different random seeds.
We found that using the spatially dependent neighborhood ma-
trix leads to higher performance in the survival prediction task
(Fig. 3, 7.5% and 4.8% increase compared with the top-
performing non-spatial features for the patient and coverslip
folds, respectively). In addition to the neighborhood matrix, we
also tested the usage of the transformed Ripley’s K-function for
survival prediction. While using it on its own does not improve
upon the other individual features, when combined with other
spatial features (the neighborhood matrix) it obtains the highest
average concordance index (0.717 and 0.719 for patient and
coverslip folds, respectively).

We performed additional experiments combining spatial
and non-spatial features to train RSF models (Supplementary
Fig. S5). We found that while combining the neighborhood
matrix with the non-spatial features improved performance
over using the non-spatial features alone (9.2% and 13.4%
for patient and coverslip folds, respectively), none of these
combinations improve performance over the combination
with the neighborhood matrix and the K-function features.

We also compared the performance of the spatial features
to other methods that have been previously applied to classi-
fying proteomic imaging data. Specifically, we compared our
features with DenVar (Section 2), an approach to cluster spa-
tial proteomic imaging samples into meaningful groups based
on probability densities of biomarker expression (Seal et al.
2022), and to an approach by Patwa et al. (2021), which
defines thresholds to convert biomarker expressions in each
cell to a binary value. The proportion of cells positive for each
biomarker in a sample is then used as input for the RSF model
(Section 2). Results for these methods, presented in the gray
bars in Fig. 3, show that combining the different spatial fea-
tures we propose improves upon these previous methods
(7.2% and 9.3% increase compared with the top-performing
comparison method for the patient and coverslip folds,
respectively).

3.4 Top features selected by the RSF model are

relevant to HNSCC

We inspected the top features utilized by the RSF model by
using the permutation importance method (Altmann et al.
2010) to rank features. In this method, each feature is ran-
domly permuted across samples n¼100 times and the aver-
age change in concordance index is computed. The larger
the change in concordance index, the higher the feature

Table 1. Different featurizations of the data.

Featurization Spatially dependent Cell segmentation Cell type-based Biomarker-based Pairwise

Average biomarker across image � � � � �
Average biomarker in cells � � � � �

Cell type proportions � � � � �
Neighborhood matrix � � � � �

Ripley’s K function, L̂
norm

w;m ðrÞ � � � � �

“Spatially dependent” means that the featurization uses the spatial locations of cells, “cell segmentation” uses the cell segmentation masks, “cell type-based”
uses the cell type labels, “biomarker-based” uses the biomarker expression levels “directly” in the featurization, and “pairwise” computes pairwise features
between cell types.
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ranks in importance. Supplementary Table S3 shows the top
15 features for each of the feature sets listed in Fig. 3. Many
of the top features are known to be associated with survival.
For example, the top-ranked feature from the RSF trained
using “cell type proportions” features is a CD21-positive tu-
mor cell subtype. While the mechanisms of this specific tu-
mor subtype in HNSCC are still under-explored, the
proportion of tumor cells in a sample is associated with
worse prognosis in some cancers (West et al. 2010).
Furthermore, most of the top-ranked spatial features from
the “neighborhood matrix” involve pairwise interactions be-
tween different tumor cell subtypes. These features can be
interpreted as measures of tumor heterogeneity and suggest
that such heterogeneity plays a key role in disease progres-
sion. Indeed, previous work has shown that tumor heteroge-
neity correlates with poor outcome in HNSCC (Mroz and
Rocco 2013). From the RSF model trained on both the
neighborhood matrix and K-function features, the top K-
function feature was the FoxP3 function value at r¼ 80 lm.
FoxP3 is a marker for regulatory T cells, which has been

shown to upregulate immunosuppressive molecules in
HNSCC tumors (Jie et al. 2013).

3.5 RSF-derived risk factors reveal enriched cell–cell

interactions in “high-risk” HNSCC patients

We next used predicted risk values from the RSF model
trained on the neighborhood matrix features to stratify
patients into “low-risk” and “high-risk” cohorts (Fig. 4a;
Section 2). Figure 4b shows that the Kaplan–Meier curves for
these cohorts are statistically significantly different (log-rank
test, p ¼ 3:106e–4). We performed statistical analysis on the
neighborhood features (Section 2) and revealed that there
were significant differences in the neighbor fraction counts for
macrophage-stromal/fibroblast interactions (Mann–Whitney
U-test, p ¼ 4:10e–19) and naive immune cell-stromal/
fibroblast interactions (p ¼ 9:26e–7) between the “low-risk”
and “high-risk” cohorts (Fig. 4c). An increase in macrophage-
stromal/fibroblast interactions in high-risk patients may sug-
gest that macrophages have been recruited to the tissue sur-
rounding the tumor to suppress the immune response;

Figure 2. (a, b) Image samples showing biomarker intensity of DAPI, CD45, CD68, and PanCK. (c, d) Transformed Ripley’s K-function for markers CD45,

CD68, and PanCK corresponding to (a) and (b), respectively. (e) Violin plot of transformed K function values at r¼ 30 lm for biomarkers CD68 and

Vimentin, separated by HPV status. ** indicates Bonferroni-corrected P-value< .05.
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however, this hypothesis would need to be explored further to
be confirmed. TAMs are known to suppress antitumoral im-
munity and promote tumor progression (Pollard 2004; Kuang
et al. 2007), and a high density of TAMs have been shown to
be associated with poor prognosis in many cancers (Pollard
2004; Kuang et al. 2007). There is also evidence of cancer-
associated fibroblasts (CAFs) inducing the immunosuppres-
sive and protumoral phenotype of TAMs in oral squamous
cell carcinoma (Takahashi et al. 2017). The increase in naive
immune cell (CD45RAþ)-stromal/fibroblast interactions in
high-risk patients is supported by previous studies showing
that CAFs are able to modulate tumor-associated T cell activ-
ity (Nazareth et al. 2007) and encourage immune cells to pro-
mote the development of tumors in many cancers (Mao et al.
2021). For example, such interactions can facilitate the degra-
dation of the extracellular matrix, which results in dysfunc-
tion in the cancer immune response (Ziani et al. 2018; Mao
et al. 2021). A full list of significant pairwise neighbor interac-
tions can be found in Supplementary Fig. S6.

4 Discussion

Spatial proteomics is a promising direction for the study,
analysis, and use of clinical tissue samples. While some work

has already been applied to predict clinical outcomes using
this data, few methods fully utilize the available spatial infor-
mation. Motivated by prior work in ecology and epidemiol-
ogy, we explored novel spatial features that can be extracted
from spatial proteomics data. These included features based
on cell type location (neighborhood matrix) and features
based on individual markers (a transformation of Ripley’s K-
function).

We tested the use of these new spatial features to predict
the survival length of patients with HNSCC. Incorporation of
spatial features into predictive models led to consistent perfor-
mance improvements over both non-spatial features and pre-
vious methods that did not fully utilize spatial information.
Specifically, the combination of Ripley’s K-function and
neighborhood matrix features performed best. Interestingly,
we observed that combining the K-function and non-spatial
features do not improve much over only using non-spatial fea-
tures (Supplementary Fig. S5). This may suggest that the
neighborhood matrix complements the K-function for perfor-
mance improvement, and exploration of how this occurs is an
interesting direction for future work.

While the main goal of these features is to improve patient
outcome prediction, they can also be used to explore interac-
tions that impact survival. Predicting patients as low risk and

Figure 3. Survival length prediction performance using different feature sets. The colors of the bars mean the following; orange: non-spatial features,

green: spatial features, blue: combination of spatial features, gray: comparison methods. Concordance indices are presented with 95% confidence

intervals. The combination of the neighborhood matrix and the transformed Ripley’s K-function has the highest average concordance index for both the

patient-grouped and coverslip-grouped cross-validation schemes.

(a) (b) (c)

Figure 4. Immune cell-fibroblast interactions are enriched in tumors of “high-risk” HNSCC patients. (a) Predicted risk values from RSF are used to stratify

patients into “low-risk” and “high-risk” cohorts. (b) Kaplan–Meier curves of “low-risk” and “high-risk” patients with log-rank P-value (p ¼ 3:106e � 4). (c)

Nearest neighbor fraction values for cell type pairs (Macrophage <> Stromal/Fibroblast) and (Naive immune cell <> Stromal/Fibroblast) in “low-risk”

and “high-risk” samples. ** indicates Bonferroni-corrected P-value< .01.

i146 Dayao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i140/7210468 by C

arnegie M
ellon U

niversity user on 05 O
ctober 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad245#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad245#supplementary-data


high risk using our survival model revealed cell type interac-
tion pairs from the neighborhood matrix that are significantly
enriched in high-risk HNSCC patients, namely macrophage-
stromal/fibroblast interactions and naive immune cell-
stromal/fibroblast interactions. The model predicts that an
increase in interactions between these pairs leads to higher
risk patients. These results agree with previous findings that
suggest that interactions between TAMs and CAFs lead to im-
munosuppressive and protumoral behavior which increases
risk (Pollard 2004; Kuang et al. 2007; Mao et al. 2021).

Our work can also be used to motivate additional types of
features. These include the use of unsupervised methods to
cluster cells rather than supervised cell type assignment when
constructing the neighborhood matrix and non-cell-based K-
functions for biomarkers. While these methods were not ex-
plored in this article, they are a promising direction for future
work.

Given its advantages, spatial proteomics data will continue
to gain popularity in clinical sample analysis. We believe that
the methods presented would enable better use of the data
leading to improve biological inference and decision making.
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